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ABSTRACT

In this paper we present a theoretical and numerical study of the growth of

linear disturbances in the high-Reynolds-number laminar compressible wake behind a

flat plate which is aligned with a uniform stream. No ad hoc assumptions are made

as to the nature of the undisturbed flow (in contrast to previous investigations) but

instead the theory is developed rationally by use of proper wake-profiles which satisfy

the steady equations of motion. The initial growth of near wake perturbations is

governed by the compressible Rayleigh equation which is studied analytically for

long- and short-waves. These solutions emphasize the asymptotic struclures involved

and provide a rational basis for a nonlinear development. The evolution of arbitrary

wavelength perturbations is addressed numerically and spatial stability solutions are

presented that account for the relative importance of the different physical mechan-

isms present, such as three-dimensionality, increasing Mach numbers and the non-

parallel nature of the mean flow. Our findings indicate that for low enough (sub-

sonic) Mach numbers, there exists a region of absolute instability very close to the

trailing-edge with the majority of the wake being convectively unstable. At higher

Mach numbers (but still not large - hypersonic) the absolute instability region seems

to disappear and the maximum available growth-rates decrease considerably. Three-

dimensional perturbations provide the highest spatial growth-rates.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.
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1. lnlroduction.

In recent years there has been an increased interest in compressible shear layer flows due to the

need in development of hypersonic propulsion systems for trans-atmospheric flight. The major problem

that faces these projects, is the degree of stabilization that compressible mixing layers exhibit as the

Mach number increases. This in turn me:ans that the high degree of mixing that is desirable before igni-

tion (in the scram-jet engine for example) is not available inside the system. A quantitative understand-

ing of the instability mechanisms present is of much Value, therefore. Some techniques have been sug-

gested to alleviate this problem, by Kumar et al. (1987) .....

Most of the effort in understanding the stability of shear layers has been centered around the fully

developed rnonotonic compressible shear layer Which is typically modeled by a hyperbolic tangent dis-

tribution, together with the corresponding temperature profile (see for example Gropengiesser (i969),

Jackson and Grosch (1989a,b), Ragab and Wu (1988)). In practiced applications, such as those sited

above, the mixing occurs when two streams come together nt the trailing edge of n splitter plate to

form a wake. If the fi-ee-stream velocities of the two components are different (usually this is the case,

but in many cases they are numerically Close) the tanh shear layer forms the far wake development of

the steady equations of motion. There is a region closer to the trailing edge, where the unperturbed

flow has a definite wake component, it is the purpose of this paper to analyze the instability mechan-

isms o(this wake region. In order to fix m_tters we will consider the case of a plane wake where the

free-stream values of the two oncoming fluid components are equal.

Incompressible wakes have been studied extensively for the existence of unstable waves through

numerical and analytical solutions of the classicai Rayleigh stability equation. Most early studies

assume an ad hoc basic flow in the form of a gaussian or sech 2 velocity disirqbufi6n (iiollingdale

(1940); McKoen (1957); Sat0 and Kuriki (1961); Mattingly and Criminale (1972)). It is clear that such

basic flow does not satisfy the equations of motion and at best provides the correct characteristics of

the far-wake. Further more, the flow characteristics in the near wake are fairly Complicated and involve

the double structure described in the seminal work of Goldstein (1930), where there is a displaced

outer boundary-layer region together with a thinner region including the wake center-line through

which the abrupt change of boundary conditions (from no-slip upstream, to symmetr 7 downstream) is

accommodated. Papageorgiou and Smith (1989) (referred to as PSI) have considered incompressible
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wake-stability,bothanalyticallyandnumerically,usinga correctbasicflow that satisfiestheequations

of motionfor largeReynoldsnumbers(the wake-boundary-layerequationsof Goldstein).The non-

lineardevelopmentof the instabilityis analyzedin anaccompanyingpaper,PapageorgiouandSmith

(1988)(referredto asPS2).

A very interestingandphysicallyimportantaspectof shearlayerflows is thepossibilityof con-

vectiveor absoluteinstabilities.Foranaccountof the ideasinvolvedin shearlayerstabilityseeHuerre

andMonkewitz(1985),ltuerre (1987). This aspectof instabilityhasbeenstudiedby Betchovand

Criminale(1966)andmorerecentlyby HultgrenandAggarwal (1987), for a two-parameter family of

model basic states. More specifically the basic flow is assumed to have the form _ = 1 - a e-by', where

0 < a < 1 , b > 0 or an equivalent sech 2 distribution. Ilultgren and Aggarwal for example, find that

the flow becomes absolutely unstable when a > 0.943. Such a profile clearly corresponds to a station

very close to the trailing edge as we briefly demonstrate. The center-line velocity of the proposed

absolute-instability profiles is at most 0.057 in non-dimensional terms. Using Goldstein's resulls (see

also Smith (1984)) we know that the velocity in the near-wake at the center-line is given by

1.611xlt3_. :v3 where _. is the Blasius skin-friction and is equal to 0.33206 .... Equating the value 0.057

with this, gives the value for the non-dimensional x-station to be x = 0.0004017, or _ = x It3 = 0.0738.

The basic flow at this point does not seem to be representable by the gaussian model (see our results

section) and so some serious objections may be raised as to the rational prediction of

convective/absolute change-overs by use of such models. The trends seem to be correct, however, in

comparison to the results of PSI which suggest an absolute instability region very near the trailing

edge. The important question that arises in supersonic wakes is, besides the possibility of absolute ins-

tability regions per se, the Characteristics of an absolule instability region as the Mach number

increases. This is addressed numerically for two Mach numbers that are representative of the different

physics that is involved; these are 0.I and 3.0 corresponding to compressible subsonic and supersonic

flow respectively. It is found that the subsonic flow contains a region of absoh, le instability whereas

the supersonic one seems not to. The streamwise station at which the change-over from convective to

absolute instability takes place for M=0.1 is less than 0.000001 in non-dimensional terms.

The purpose of the present work is to extend the incompressible study of PSI to compressible

flows of arbitrary Mach numbers. Our approach is that of classical linear stability theory that covers

both two- and three-dimensional disturbances. In Section 2 we briefly describe the basic flow and
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formulatethe linearstabilityproblemthat leadsto the compressibleRayleighequation.Section3 is

usedto analyze_e stabilityof short-wavedisturbancesin theverynearwakewherethecompressible

analogueof theGoldsteindoublestructureprovidesanasymptoticdescriptionfor theunperturbedflow.

In Section4 weconsiderthebehaviorof long-waves(thesewavesarelongcomparedto theboundary-

layerthicknessbut notas long astheplatelenglh-seeSection2 also). Section5 discussesnumerical

solutionsof theRayielghequationusingthenominallyexactunperturbedprofilesthatarein turncorn-

putednumerically.In Section6 wepresentnumerical results for a range of streamwise stations, Mach

numbers and angles of wave propagation, and finally we draw some conclusions.

Throughout the paper we use a cartesian frame of coordinates which is fixed at the trailing edge

x = 0. The flow quantities p , u , v, w, p, T, _t denote non-dimensional density, velocities in the x,

y and z directions, pressure, temperature and viscosity coefficient respectively, where non-

dimensionalizations are made with respect to free-stream values which are denoted by a subscript oo.

The Reynolds number is R e U,,L= _ where L is the plate length, the Mach number is M = U.Ja where
Voo

a is the sound-speed and the Prandtl number is Pr = It,.. c_k where Cp is the specific heat at constant

pressure and k is the coefficient of thermal diffusivity. R e is taken to be asymptotically large

throughout, while M** iS arbitrary within the context of validity of the equations of motion. The

governing equations used are the 2D steady and pressure-free (classical) compressible boundary-layer

equations for the calculation of the basic flow (bars are used to distinguish the basic flow), or the

unsteady compressible 3D Euler equations for the evolution of wavy disturbances. We give these here

for future reference.

P (uu + vtrr) = (Irur) ,

- 1 (_,_y (y 1 )M 2 E_

,

(l.la)

(l.lb)

(l.lc)

_T=I (Z.ld)

The boundary Conditions are

. =:: =÷

u--r(x,O)=Tr(x,O) 0 , U(x,o,,)= = I (I.IBC)

=__

=

=

=
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i

|

g
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The 3D Euler equations are used in the form
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1
p(u t+uu x+vuy+wu z)= _..2 Px , (1.2a)

]'M

1
p(v t+uv x+vvy+wv z)= __.,2 Py ' (1.2b)

ylvl

1
p(w t+uw x+vwy+ww z)=- _.,,2 Pz , (1.2c)

TJVl

1
=-- (Pt +upx +vpy

p (T t+uT x+ vTy+ wTr.) 7 "'2M

pt+(pu)x+(19V)y+(pw)z=0 ,

p=pT(y- 1)M 2

+wp,.) , (I.2d)

(l.2e)

(1.20

2. Basic flow and formulalion of the linear slabilily problem.

The formulation that leads to the compressible Rayleigh equation essentially follows that of the

incompressible analogue, as described in PSI for example. It is instructive, however, to bear in mind

the scales for which the Rayleigh equation is valid in the case of a planar wake. The arguments of

PSI carry over to the present problem also (the important physical mechanism is the asymptotically

large Reynolds number which is common to both flows), and the instability develops on a local region

of horizontal and lateral extent of order R_-1;2; the time scale of the instability is also of order R_lrz.

These scalings insure the inviscid development of wavy disturbances of the viscous underlying basic

flow. Further more, as is usual in Rayleigh-type evolutions, the scales are such that the x-variation of

the basic flow as well as its lateral component, are higher order effects. In the present problem the

streamwise component of the basic flow varies on an order one x-scale while the lateral component is

of order R_-I/2. Viscosity becomes important when the wavelength of the perturbation becomes of

order unity as compared to the wake-thickness. For more details of the scaling analysis see PSI and

PS2.

Before the introduction of a perturbation it is useful to summarize the characteristics of the under-

lying unperturbed state. This is described in detail by Papageorgiou (1989) and we sketch the results

here. The governing equations are (l.la-d) together with the boundary conditions (I.IBC). Next we

assume a model fluid and a linear viscosity law, i.e. the Prandtl number Pr = 1 and I-t = C T

(Chapman's law, C is a constant that is scaled out of the problem and the equation ft = T is used ).
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Y

The Dorodnitsyn-Itowarth transformation Y = I dyT

equation (see Stewartson (1964)) becomes

is employed, from which it is seen that Crocco's

a_T -( y- I ) M2

It follows that T involves two constants of integration which can be found by matching with the

upstream flow. _Two physically distinct cases are given, (i) constant wall temperature, T w say, on the

plate, and (ii) insulated walls (i.e. the temperature gradient is zero on the plate upstream). In case (i)

the result is

1 M 2 u--'7)+(Tw 1 )( 1 _) ,T(x,Y)= 1 +-_-(y---1 ) (_- - _ (2.1)

while in case (ii) we have

-- I M 2
T(x,Y)=I+_('I_-I) (l-u -_) (2.2)

In order to solve for the velocity _(x,Y), conditions must also be given at the outset x = 0 since the

problem is parabolic in x. The nonlinear system that gives the undisturbed flow is : :

u=_llv , ut,x-_xuv=Fvv , (3)

holding for x > 0, together with the boundary conditions

iT(x,,,,,)=l , _(x,O)=_v(x,O)=O

where _B represents the Blasius Velocity profile given by

1 1t/13. ,• D'" + = 0

m

, _I'(0_-,Y)=_I'B(Y) , (2.3BC)

gB(0) = _tJ'(0) = gB'(°°) - 1 = 0 ; _ts"(0) = k = 0.332 ....

We will be mainly concerned with adiabatic wall conditions but the results can be extended to constant

wall temperatures also.

With the basic flow assumed known, a perturbation of size c t is introduced so that the total flow

has the form

( u, v, w, p ,T, p)= (_', 0 ,0, F, T, 0 )+el ( h, _ ,¢v, t_ ,'i", D)e i (etx + 1_z-t°t)

where the tilde functions depend on y alone. Substitution into (l.2a-f) (we are anticipating the inviscid

!

'!

|

z.

i
=

=

:z

=

=

=
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result here; equivalently a substitution into the Navier-Stokes equations together with the instability

scales described earlier yields the same result), and linearization with respect to t; provides a linear sys-

tem of five ordinary differential equations. We will work with the transformed variable Y rather than

the physical one and will use the following forms of the compressible Rayleigh equation obtained by

elimination of four unknowns and dropping of the tildes :

,, 2_' p, ,T'2[o,2+_2 et2 )2M 2p - -_ (_-c ]p=0 , (2.4)
_ - c T

___d c) 9 (2.5)
dY G T J

where primes denote Y-derivatives and G is given by

+ 132 _ )2G= T-M2(5-c
0(2

Equations (2.4) and (2.5) describe the evolution of perturbation pressure and normal velocity respec-

tively; (2.5) was used by Gropengiesser (1969) in his study of shear layers. There is a choice in boun-

dary conditions at the wake center-line Y = 0, due to the symmetry of the basic flow. We choose to

study two distinct wake-modes, anti-symmetric ones (mode I) and symmetric ones (mode I1). The con-

vention used here is that of incompressible wake stability whereby the perturbation is termed anti-

symmetric/symmetric if the streamwise velocity perturbation, u, is anti-symmetric/symmetric with

respect to Y--0. It is generally found that the anti-symmetric ones are the most dangerous ones. Experi-

mental evidence lends weight to this finding through the well-known Karman vortex-street found in

wakes. The boundary conditions used are, therefore,

Model p(Y--O)=0 , p(Y--'_)=0 , Mode II p'(Y=0)=0 , p(y_--oo)=0 , (2.4BC)

Mode I _'(Y=0) = 0 , _(Y----_) = 0 , Mode II _(Y----0) = 0 , _(y=oo) = 0 (2.5BC)

Here we have assumed that the disturbance decays at infinity. This assumption is reasonable since, in

contrast to shear layers, there does not exist a supersonic region that can support neutrally stable oscil-

lafory outgoing waves (see comments of Section 6 also; for a discussion of supersonic shear waves see

Jackson and Grosch (1989a)). The eigenvalue problems defined by (2.4), (2.4BC) or (2.5), (2.5BC)

are equivalent and must, in general, be addressed numerically. This is done in Section 5, but before

discussing numerical solutions we consider two important limits which are amenable to analysis. These
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limits areshort-andlong-waveswhichin 2D temporaltheoryarecharacterizedby ct----+ooandct_ 0

respectively(seePS1). It is worthnotingthat short- and long-wave analyses only make sense for tem-

poral theories, but as it turns out the growth rates are asymptotically small in both cases thereby mak-

ing the results readily applicable to spatial stability via the Gaster (1968) group velocity transformation.

The analysis of the following sections considers iwo-dlmensional waves and these results are extendi-

ble to three-dimension,'d ones after minor modifications.

3. Short waves, cz --, oo.

In this section we construct the asympt0tic behavior of the solutions in the limit of large or. The

physical structure of these waves is that they have length-scales which are small compared to the wake

thickness. Further more we concentrate on the near-wake where the basic flow is described by the

Goldstein double structure (see Papageorgiou (1989) for example). Our analysis can be viewed in

terms of the double limit x --_ 0 and ot --+ co. The ideas and structures involved are similar to the

incompressible case studied in PS1, but the growth rates we compute here are larger than their

incompressible counterparts.

The starting point is the Rayleigh equation (2.5) which is considered for 2D anti-symmetric

(mode I) disturbances - equivalently the pressure equation can be used, as well as mode II waves but

as the subsequent numerical results indicate, mode I waves are more unstable (see comments in the

introduction also), Inspection suggests the following expansions in the re-scaled region Y = oC t q with

rl -- 0(1) :

¢=%+a-t¢,+a-2¢2+ "'" ,

_ = + otLI _. 11 + 0,74 _.,t 1"1't + • • •

C = C 0+ Ot-I C ! + O_-2 C 2 + O_-3 C 3 + • • •

For adiabatic walls the temperature expands as

T=T o-or -2rl 2T 2+ ... , T o= 1 +l(y---l)M2
g

y

(3.ia)

(3.1b)

(3.1c)

T2 = 2(Y-1)_,2M 2 (3. ld)

The constant 7Lin (3.1b) is the skin-friction of the Blasius flow discussed in the previous section, and

_,t = -(1/48) 7L2. The expansion (3.1b) reflects the fact that we are outside the Goldstein layer where

=

=

=

=

_=

z

Z

m

=--_

-
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the basic flow is essentially the displaced Blasius flow. In the analysis that follows the Goldstein layer

(of thickness x to3) is thin compared to the wavelength 2rt/ct; the ordering o_-_ x I/3 is therefore

observed. Physically this corresponds to file development of waves which are short compared to the

boundary-layer thickness but not as short as the Goldstein layer thickness. It can also be seen that

given any large _, the position x can be chosen to be small enough so as to validate the above order-

ing (this is achievable as long as x :_ Re 3/8 which means that we are still outside the triple-deck).

In view of the above, the Goldstein layer can be regarded as a sharp interface across which the

perturbation pressure and normal velocity must be continuous. This means that the following conditions

hold to all orders in ¢_-t :

[#1=0 , [(_-c)_n- V#]=0 , (3.2a,b)

where the square bracket denotes the jump across r I = 0. In view of these physical constraints, we find

.______afor a non-trivial solution the leading order phase-speed vanishes, i.e.
1
t

" Co= 0
!

is not surprising in view of the fact that the basic flow has a maximum streamwise component of

¢t-1 with which it can convect disturbances downstream. Substitution of (3.1a-d) into (2.5) gives

,llowing solution to leading order

- + Torl
¢0_ = A0 e , (3.3)

± refers to the solution for 11 > 0 and rl < 0 respectively. Condition (3.2a) has been used to

ae same constant A 0 in the upper and lower half planes respectively. When the leading order

n (3.3) is used in the pressure continuity condition (3.2b), and O(o_-t} are balanced, we obtain

:ling contribution to the phase-speed to be

el =w , (3.4)
To

the compressible analogue of the result in PSI. It can be seen from this expression that the

9eed of the perturbation decreases with increasing Mach number (cf. (3.1d)) and in fact decays

call), in the hypersonic limit. Next we find _2 = 0 , c2 = 0 (see below). This implies that the

_ves constructed here are ahnost neutral and have growth-rates of O(o_-3) at most. This is in

to the incompressible problem which yields O(ct -4) growth-rates (cf. PSI). The complex
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coefficientc3 is computed by construction of uniformly valid asymptotic expansions which are matched

across the critical layers and the central Goldstein layer to satisfy the boundary conditions and so pro-

vide the correction to the eigenvalue problem.

Before proceeding to the higher order approximations, it is useful to introduce a new vertical

coordinate _, given by _ = T O1"1;this simplifies the algebraic expressions since the critical layers now

occur at _ = + 1 (see below). The next corrections to the elgenfunction satisfy the following equa-

tions, then

(+_-l)(_zr.,F,-_l) =0 , _z(:b,,,)=0 , (3.5)

_2_ - _2 = + 2 S (y _ --+ 1) e -_ _ - S('_ 2 -+ 2_, + l) e -_

+ 2S ( (')L--I)_ --+ 1) e_
(±_- 1) ' _2(+_) =0 , (3.6)

where as before the upper sign is to be taken in the region _ > 0 and the lower one in _ < 0. The con-

stant S appearing in 3.6 is given by

k 2 A 0 M 2
S=

To

The solution for _1 is identical to that of % and so, without loss of generality, it is taken to be zero by

re-normalization of A o. As mentioned earlier, it can be seen that (3.6) has singularities at the levels

:1: I; these singularities are critical layers and arise because the phase-speed is neutral to leading

order (cf. (3.4) above). The solution for d_2 then splits up into four distinct regions (el. Figure ! in

PS1). The four regions 1 <_<,,_ , 0<_< 1 , -1 <_<0 , --oo<_<-I are denoted by

(1), (2), (3) and (4) respectively and the following solutions are found

! _32_1)=e_[B__S(_ .:3+7(_1) +(Y- )_+(V--2)ln(_-l)

3+Se _'f[-_l +(_'l)_l +(Y- )+_ ]e -2_''d_i , (3.7a)

+ A2 e_+S e_I[ _1._2 + (.D_I)_l + (._,_3) + _] e-2_, di, (3.7b)

I
u

--7_-
m

=

z

7_
7.
E

!

B

!

|
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_2(s)= et" [ Bs + S (-6"_ s - _-- (y)-l) + (y--) _ - ("t-2) In(_, + I)

¢t 4) = e_ [ B4 + S (-1"1/_3 - -_- (T-I-l) + (y--) _ - ('1-2) lnl_ + 11

t,
1 2 3

- S e-F" J l --_-Y_l - (D -I) E1 + (Y-z) - (Y-2)_l+l] e2_'; d_l ' (3.7d)
_oo

In matching solutions across the critical levels we assume that the constants in the various regions are

suitably connected so as to render our inviscid solution as the zero viscosity limit of the Orr-

Sommerfeld equation. This amounts to picking up the correct branch from the complex logarithmic

dependence as has been explained by Lin (1955), Lees and Lin (1946) (see also Drazin and Reid

(1981)). The net effect, therefore, is a phase-jump of -i_ sgn('h"(_ = +i) ) as a critical level is crossed

from above (the temperature basic state is passive in this because it is positive throughout the domain).

Another set of connection equations is obtained from the continuity of _ across the levels ,_ = +1. The

analysis is fairly lengthy so we just give the results here. The following four algebraic equations are

obtained that connect the six unknowns A 1 , A 2 , B I , 132 , I]3 , 134 :

B I - I]2 ---e2 A 2 = e (P3 - Pl) , (3.8a)

Bt - B2 +e2 A2 = P4 - 2rtiS(y--2) , (3.8b)

133 - 134 +e 2 A 3 = e (P7 - P5) , (3.8c)

B3 - B4 ---e2 A 3 = ---e (P6 + Ps) + 21tiS('_-2) , (3.8d)

where Pt , P3 , P4, Ps, P6, P7 , Ps are real constants that arise from the limiting values of individual

solutions as the critical layers are approached from above or below. The exact effect of these constants

is of secondary importance to our purpose here since they are real valued and do not contribute

towards the instability. The complex terms (phase-jumps from the critical layers) are explicitly included

in the equations (3.8a-d) above.

The remaining two algebraic equations that enable complete solution for #2 are obtained by con-

sideration of the Goldstein layer dynamics. We point out again that the scales involved are essentially

those of the incompressible problem of PSI; the compressibility effects, however, introduce
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perturbationdynamicsat a lowerorder. TheGoldsteinlayerhasthicknesse = xI/3,_ 1.A rescalingof

the Dorodnotsyn-Howarthvariableis required,therefore,andthe orderone variableZ is introduced,

givenby Y = E Z. Consideration of the outer solutions for small r1 (or/_ ) suggests that the eigenfunc-

tion inside the Goldstein layer proceeds in powers of oct (this comes from the expansion of _o). The

next outer correction is ct-2 _2 and as we have shown above #2 contains an order-one displacement.

Further more it is clear that instability will arise from the contribution of #2 (it contains the complex

phase-jumps) and so we chose to structure our expansion so that the effects of _2 come in at second

order. This requires the balance ect = a-2 or e = ot-_. In view of the definition of e this scaling

implies an asymptotic wavelength of order x 1/12 as x tends to zero. The validity of the solutions can

be improved by a double expansion in powers of et-1 and Ect, whereby the asymptotic condition is

ect < 1. Both methods give the same final result (as was found for the incompressible problem of PSI

also) and for brevity we present the former analysis.

Using oC i as the perturbation parameter the Goldstein layer is given by Y = o_-3Z and the

expansions are found to be

CG(Z) = _'o(Z) + Ot-2_l(Z) + ot-_O2(Z) + • • • , (3.9a)

u-=tz-sF(Z)+O(cz -12) F(Z)-+Z.(IZI +AG) asZ_:t:,,o , (3.9b)

- 1 _--6
T = T O- _ (y-I)M2F 2 + O(t_-15)

C = Of,-! C I + _-3 C3 4- • • • ,

(3.9c)

(3.9d)

where the function F(Z) is the self-similar near-wake solution found by Goldstein (1930); the constant

A G represents the positive displacement of the upstream boundary-layers. The three leading order

solutions are then found to be

(I)0 = Ao , (3.10a)

A 0

tI, I=- F(Z)+A 1Z+A 2 ,
Cl

(3.10b)

AoC3 A2 AI

@'2 =( c_ cl )F'(Z)+To 2A oZ-_ct (ZF'(Z)-F(Z)) (3.10c)

where A I , A 2 are constants to be determined from matching. Note that the solutions above reflect the

,i
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fact that we are considering mode I waves. With (3.10a-c) at hand, it is fairly straight-forward to match

with the outer solutions as IZI "_ " and J_l -'_ 0 respectively. This implies that AI = 0 and yields

the two required algebraic equations:

A°XAG (3.1 la)A2 + B 2 = A 3 + B3 ( = A 2 _ ) ,
Cl

2k
A 2+ A 3- 132- ]33= _ (

|o

A0c3 A2
) (3.1 lb)

C? Cl

Solution for the six unknown constants yields the second order correction to the wave-speed c to be

C 3 _
2ToA o e2

(3.12)

In (3.12) above, A is a real constant which we need not give here. The imaginary part of c3 is given

by (using the definition of S)

2rt(y-2)_,3M 2

c3i = e2 [1 + (l/2)(y--1)M2l 4
(3.13)

Since Y < 2 (in fact Y = 1.4 ) the imaginary part of c3 is positive and so the flow is linearly unstable.

This last remark follows from the correct identification of physically meaningful zero viscosity limit

solutions of the Orr-Sommerfeld equation (cf. Lin (1955)). Another point worth noting, is that the

growth rate in the hypersonic limit behaves like M -6 as M .-4 _, as opposed to the M-2 decay of the

leading order phase-speed ct. This means that the correction ff,-3c 3 always remains asymptotically

smaller than ot-lct as the Mach number increases without bound for any functional dependence of

Mach number on t_.

4. Long waves, a _ 0.

The intuitive approach to long-wavelength perturbations indicates that the exact details of the

basic flow near the center-line are not that important, in obtaining leading order results at least, and the

solutions depend on the basic flow characteristics at infinity. This was pointed out and utilized by

Drazin and Howard (1966) in the description of several "broken-line" profiles, the results of which

extend to wakes also. Originally the analysis described incompressible flows, but was later extended to

include compressible ones also (Gill and Drazin (1965), Blumen et al. (1975)). The approach
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essentiallydependson obtainingsolutionsin the upperandlowerhalf-planesrespectively,andusing

theirWronskianto fix the eigenvalues. In the present work we present a different approach which is

based on the scalings and structures of the various asymptotic regions involved. This is useful in that

it motivates scalings for low-frequency/long-wavelength nonlinear stability also. The incompressible

problem is described in PSI, and its low-frequency nonlinear stability analysis is given in PS2. The

asymptotic limit (x --, 0 is therefore considered and as in Section 3 we choose to work with equation

(2.5) for the perturbation normal velocity. Physically, we-,are considering instability scales that _lre

long compared to the wake thickness but still short compared to the plate length. Further more mode I

disturbances are considered since they generally provide higher growth rates (see earlier comments).

A region Y = O(1) is considered first (region I), where the appropriate expansions are found to

be •

¢ = ¢o + cc1_2¢1+ eez + cz_2¢3+ o_2¢4+ " • ' (4.1a)

C = CO + (3_1/2Cl + O'.C2 + " " " (4.1b)

The function G that appears in (2.5) also expands as follows •

G=G 0+(zlt2G t4- ...

where

G O= T(Y) - M2(ff-c0) 2 (4.1c)

Let us now define the following linear oper,_tor L •

L(.) = ('if--Co)-_ - _' (.) (4.2)

Substitution of (4.1a-c) into (2.5) gives the following four leading order problems :

(4.3a)

dll 1d'---Y" _ (L(¢l}'-Cl¢'O) = 0
(4.3b)

jd-_ -_o (L(O2)-c|O't--c2¢'o) = 0
(4.3c)

it

=

|

m

!

|
=
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d"_" _ (L(_9-ct_,'2-c2_,':c3_,'o)= 0 , (4.3d)

d'--Y"-_0 (L(,4)-ci*'3-c2,'2--c3,'I--c4_,'0)= T _o (4.3e)

The appropriate solution of (4.3a) that is both even and bounded for large Y is the displacement solu-

tion

_o = Ao(-ff-Co) , (4.4)

and to ensure decay to zero at infinity the leading order wave-speed is

co=l

It is not surprising to find, therefore, that long-waves are almost neulral and have phase-speeds approx-

imately equal to that of the free-stream.

q_i= - cIAo

Next we find

, _2 = - c2Ao , _3 = - c3A0

Substitution of (4.4) into (4.3e) gives the following solution for dp4 :

f Go(Yl)dYl (-0"-1)2 dy 2
'4 Ao(-ff- I )

(-a- 1)2 ,0 T

Y Go(y1) dYi

+ d4('ff-I ) I (-if_ 1)2

where d4 is given by

d4=A0i__12dy ,

since mode I disturbances are being analyzed and so Oprim4(O) = O.

- c4A0 , (4.5)

(4.6)

It is the boundary condition (4.6)

gence depends on the asymptotic behavior of the basic flow _. For Blasius flow this it is given by

_- 1 - (A/IYI)e -v2 as IYI _ _', while for the far wake we have _- 1 - (I/xt/2)e -v_. It can be anti-

cipated from the results of Gill and Drazin (1965), however, that the exact asymptotic behavior is not

important and the same final result is obtained to order (t It2 in the wave-speed at least. In order to

illustrate the method, therefore, we choose a model asymptotic behavior at infinity. The reason for lhis

Inspection suggests that the solution (4.6) diverges as Y becomes large. The precise rate of diver-

potential regions.

that provides the solution for the eigenvalue cI when the solutions are extended out to the far-field
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is thatthe level wheretheexpansionbreaksdowncanbe foundexplicitly in termsof ct (see below)

and the analysis is greatly reduced. The Blasius flow gives a breakdown at a logarithmically large dis-

tance away, together with the need of a logarithmically thin region there. The analysis bears a lot of

resemblance to the hypersonic limit work of Cowley and llall (1989) on the st_tbility of compressible

boundary layers. The final result is unaltered, however, and for brevity we take a model asymptotic

behavior. The far-wake profile can be worked out explicitly also (it is a simple analogue of our sug-

gested asymptotic behavior); assume, therefore that _- 1 -qe -rlYI as [YI _ "'. Then the third and

fourth terms in the expansion (4.1a) become comparable when Y - -(1/20 In(a) due to the exponential

growth of ¢4. A new region, I1 say, is introduced given by

YII = --"LIInt3t-+ _" ,
2r

where Y is of order one. Consideration of the solution in region I for large Y suggests the following

expansions in II •

d_lI = 0_I/2_1 + O'-_2 + _3;2_3 + " "" + 0tSOln0t (t_l + _2 + ...) + " " " (4.6)

=

These expansions are substituted into the Rayleigh equation (2.5), together with the appropriately

expanded forms of G and T to give the following solutions (the solutions given here have already been

matched to those in region I )

_l = A0(-q e-r?- cj) , (4.7a)

_2 =- c2A0 , (4.7b)

Y
dY

_3 = d4 ('--qe -rY - Cl) f (qe_rV + cl)2
- c3 Ao , (4.7c)

A0

= (-qe-'v- 7 (4.7d)

To complete the solution a potential region III say, of extent _-I ia also required, so introduce a new

variable Y = o_-1 _ with _ order one. Consideration of (4.7a-d) as Y--_ ,,,, implies the following

expansions in Ill •

_blIl = 0tI/2¢_0 + O_l + 0-3002 + " " " + e-°t-'r¢(('-_O + {XI/2 _1 + .'.) + " " " (4.8)

The leading order solution is
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_o = Be-; , (4.9)

whereB is a constant. The final result is obtained by matching (4.9), for small 4, with (4.7a-d) for

large Y. We find

d4 =- AoC_ ,

which when coupled with the expression (4.6) for d4 yields

f. 1
(4.8)

This result is in complete agreement with that of Gill and Drazin (1965) and it has been shown that

long-wave disturbances are almost neutral, travel with the free-stream and have growth rates of order

od/2. In view of the dependence of T on Mach number, the wake is more stable the hotter it is, i.e. the

higher tha Mach number. Even though the growth rates are small with respect to the free-stream, they

become leading order effects in a frame of reference that travels with unit speed and so a classical

weakly nonlinear approach is not likely to work (see PS2). The situation in the hypersonic limit seems

different, however, since the growth rate decays to zero like M -2 now.

5. Numerical solutions.

The previous sections presented some aspects of the analytical properties of the instability in the

special cases of short- and long-waves. As shown the growth rates are asymptotically small and in

order to find the maximally growing wavelengths or frequencies, as the case may be, the problem must

be addressed numerically in a systematic search of eigenvalues. The central element of our computa-

tions is the use of correct mean-flow profiles in the calculation of stability characteristics. Particularly,

this becomes essential in the near-wake where the use of model, e.g. gaussian profiles, is not appropri-

ate. The steady equations (2.3) together with (2.3BC) are solved numerically by marching forward in

x (Smith (1974), Cebeci et al. (1979), PSI). Some results for U and T are shown in Figures 1 and 2.

Refinement checks were made to ensure numerical accuracy. Typically 600 points are used, 300 in the

Goldstein layer and 300 in the boundary layer. Solutions are depicted at various increasing streamwise

locations ranging from _ = 0.2 to 2.0 (i.e. the x variation is from 0.008 to 8.0), and due to symmetry

the region y > 0 alone is shown. At the smallest value of _ the profile contains the Goldstein double-
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structurequiteclearly,the mainpartof the flow beingthedisplacedBiasiussolution.Furtherdown-

streamthecenter-linevelocityincreasesandthe profiledevelopsinto its far-wakeform which is a

gaussianperturbationfrom theuniformflowat infinity.Thecenter-linetemperature,on theotherhand,

decreasesasthedistancefrom the trailingedgeincreaseswith a returnto theambienttemperatureat

downstreaminfinity. Thepresentworkconcentrate;on thestabilityof thenear-wakeregionwherethe

initial growthof disturbancestakesplace.It seemslikely thatfurtherdownstreamthewakedynamics

becomenonlinearas hasbeenobservedin experimentalwork on incompressiblewakes(Satoand

Kuriki (1960)).

Thecomputationalstrategyis asfollows.A streamwisestation,_,,is Chosenandthecorrespond-

ing steady-statevelocity and temperatureprofilesare obtained. This mean flow is then used in a

quasi-parallel manner (essentially ,_ is a parameter) to define the compressible Rayleigh problem (2.4),

(2.4BC). For a given Mach number (2.4) is integrated by starting at a large value of Y (usually the

outer limit of the mean-flow calculation) where the eigenfunction is generated by its exponentially

small behavior - tfiis is readily found from (2.4) and the decaying solution is chosen in order to satisfy

boundedness at infinity (the possibility of neutral oscillatory solutions as the ones found in shear

layers, do not arise in the present problenl; see later). A fourth orderRunge-Kutta integration extends _

the solution to Y = 0, where the choice of either mode I or mode II disturbances fixes a linear eigen-

value problem which is solved by a root-finding routine. Most of the calculations address spatial stabil-

ity whereby the frequency co = ctc is taken to be real and the eigenvalues ct and c are generally com-

plex. This stability problem corresponds to disturbances growing or decaying with downstream distance

and seems to be more relevant that the temporal problem where disturbances grow in time at fixed

positions (see later discussion on convective and absolute instability). Neutral eigensolutions are also

constructed, and as has been shown by Lees and Lin (1946) these have wave-speeds equal to the value

of the mean flow at the generalized inflection points. If these points are denoted by Y¢, then they are

given by the zeros of

L(Y) =

Non-singular neutral eigensolutions have wave-speeds equal to _(Yc). In this case the Rayleigh equa-

tion has a removable singularity at Yc and in computing neutral eigensolutions we used deformation of

!
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m
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the integration into the complex plane below the singularity. By numerical evaluation of L(Y) it can

be concluded that the wake-flows under consideration have two generalized inflection points which are

symmetrically placed about the wake center-line. This situation persists at arbitrarily large Mach

numbers also, even though Ye now gets pushed towards the outer edges of the wake. In Figure 3 we

show a collection of L(Y) at different increasing Mach numbers and for the half-space Y > 0; the

profile used is at _ = 0.8 but the behavior is qualitatively the same at other wake-stations also. This in

turn means that, for a given x-station and Mach number, all neutral waves have the same wave-speed.

6. Results and discussion.

Before the presentation of stability results it is useful to consider the physical nature of the possi-

ble modes. A lot of information can be found by consideration of the eigenfunctions at infinity. Our

discussion follows the classification of instability waves in shear layers by Jackson and Grosch (1989).

The condition imposed on the disturbance is that it remains bounded as Y --4 _. For large Y, there-

fore, (2.4) gives the following behavior for 2D disturbances (3D ones form a simple extension, and we

only want to illustrate things here) :

p-e ±aaY , A2= 1 - (l--c)2M 2 (6.1)

The zeros of of A define the sonic lines where the disturbance at infinity neither grows nor decays.

These are given by

c± = 1 :t .-L-1
M

It can be seen from this equation that the two sonic lines do not cross for any Mach number, and

further more c+ represents a wave with speed higher than the free-stream value and is therefore pre-

cluded on physical grounds. If A2 is positive, the negative sign in the exponential in (6.1) is taken and

the disturbance vanishes at infinity - the perturbation is termed subsonic since it has characteristics

similar to those of incompressible stability. If A2 is negative, however, the solutions are oscillatory at

infinity where they take the form of outgoing or incoming waves. Such neutral waves are singular in

that they do not satisfy the Lees and Lin regularity condition, but they are physically relevant as zero

viscosity limit solutions of the "Orr-Sommerfeld" problem (Lees and Lin (1946), Jackson and Grosch

(1989)). In the present wake problem the possibility of A2 being negative does not arise, and to see
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this we constructthe neutralwave-speedfrom the Lees and Lin generalized inflection point criterion

and plot it together with the equation of the sonic line c_. A typical situation is depicted in Figure 4 for

two wake stations _ = 0.I and _ = 1.2. The conclusion is, therefore, that subsonic boundary conditions

at infinity are adequate.

As mentioned earlier, we chose to carry out a spatial stability analysis which is, in general, more

pertinent to wake-flows thana temporal one. Before presenting results it is worth mentioning that the

accuracy of computed eigenvalues was checked by doubling the number of points in the mean-flow

computation. The finding is that the representation of the mean-flow by 600 points produces more than

graphical accuracy in the results.

First we address the convective/absolute instability question. In Figure 5a we show a collection

of mode 1 spatial stability curves depicting the Variation of-oq (the spatial growth-rate) with frequency

co, and for the basic flow profiles at the streamwise locations

= 0.8,0.6,0.4,0.2,0.08,0.06,0.04, O_02_, 0.01.The Mach number is 0_i_and the correspond-

ing wave-number curves ( cq. vs co ) are given in Figure 5b. Figure 5a shows that as we get closer to

r

!

t
|

C
z

|

!
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the trailing edge the maximum growth rate increases sharply and the frequency band of unstable waves

decreases. This behavior is very similar to that discussed in PSI for incompressible near-wakes. The

fact that the instability is changing from convective to absolute, can be seen from Figure 5b. The

curves become steeper as _, decreases and by the stability at the final wake-station _, = 0.01 is charac-

terized by an infinite gradient. The value of ¢)(o/c_o.r is tending to zero, which is the condition for abso-

lute instability (see Ituerre and Monkewitz (1985)). It is found, therefore, that there exists a region of

absolute instability in the near wake for small Mach numbers; it is worth noting that the extent of this

region is very small, less than 0.000001×L in dimensional terms.

The effect of Mach number on the presence of absolute instability regions is investigated next.

The same wake-stations as in Figures 5 are used but the Mach number is now 3.0. Figures 6a and 6b

show the variation of spatial growth-rates and wave-numbers with frequency, for the various wake-

stations in question. First, note that in absolute terms the maximum growth rates decrease by more than

a factor of ten and the unstable frequency band decreases by a factor of two about. In general terms,

therefore, the effect of a higher Mach number is highly stabilizing (see results later also for more quan-

titative conclusions) The sharp features and singularity formation of Figures 5a,b are no longer present.
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In fact,asFigure6ashows,thespatialgrowthratecurvesconvergeto a limitingoneas_ is decreased

(thechangebetweenthecurvesat _ = 0.02and_,= 0.01is almostnegligible).Thefactthatnosingu-

larity forms is clarifiedfurtherby Figure6b; the variationof otr with frequencytendsto a limiting

curvewitha finiteslope.

Thepreviousresultsaddressedtheeffectof the basic-flowdevelopmenton its stabilitycharac-

teristics.In whatfollowswepick two typicalwake-stationsandcarryout amoredetailedstabilitycal-

culation.Thetwo profilesusedcorrespondto thevalues_ = 0.1 and_ = 1.2.Theydiffer in thatthe

former is a near-wakeprofile( x = 0.001) while the latter is a far-wakeone ( x = 1.728).Their

respectivecenter-linevelocitiesare0.0772and0.72. Physicallythenear-wakestill retainsmanyof the

characteristicsof the upstreamboundary-layerflow while in thefar-wakethe doublestructuresseen

upstream are no longer present.

Figures 7a and 7b depict the effect of Math number on the wake-stability at _ = 0.1. Mode I

waves are computed at Mach numbers 0, 0.5, 1, 1.5, 2, 2.5 and 3. A marked increase in stability is

observed with the maximum growth rate dropping from approximately 0.27 at zero Mach number to

0.03 at a Mach number of 3. The frequency range of unstable waves also decreases. The value of the

neutral wave-number ( ot ) al'so decreases with Mach number as can be seen from Figure 7b; the neu-

tral _ is the value at the ends of the depicted curves since these points correspond to the almost

attained neutral points on the spatial stability curves 7a. The curves go from right to left as the Mach

number increases. This calculation was carried further to the higher Mach numbers of 4, 5, 6, 7, 8 and

9. The results are shown in Figures 8a and 8b. The continued increase of stability is clearly demon-

strated and at a Mach number of 9 the maximum growth rate is tiny, about 0.002. Figure 8b depicts

the variation of otr with (o for the two Mach numbers of 4 nnd 9 only; the curves for intermedi,_te

Mach numbers are almost coincident but their end-points are at lower values of ar. The curve for

M = 4 is deliberately not continued to the origin since we are mainly interested at the endpoints. The

conclusion that can be drawn from this calculation Js that the neutral ot is decreasing to zero with

Mach number. The situation is quite different at a far-wake station as is shown later.

Figures 9a and 9b describe the stability characteristics of mode II waves at the station _ = O.i

and at Mach numbers of 0, 0.5 and 1.0. Comparison with Figures 7a,b shows that mode II is much

more stable than mode I. For example at M = ! the maximum growth rate of mode 1 waves is



- 22 -

approximately 0.15 while that for a mode II wave at the same Mach number is only 0.0025; the

corresponding ranges of unstable frequencies are 0 to 0.32 and 0.006 respectively. Further more, at the

wake-station under consideration, the maximum growth rate of the mode II waves increase slightly for

oblique waves, but for a given Mach number they are still much lower than the corresponding 2D

mode I growth rates. Figure 9b shows that the neutral wave-number is again decreasing with Mach

number.

In Figures 10a and 10b we show the effect of obliqueness on the instabiliiy, in particular, mode

I waves are computed at a Mach number of 3 and inclined at angles of 0, 20, 30, 45, 60 and 75

degrees respectively to the direction of the basic flow. The maximunl growth rates are seen to increase

as the angle increases, but the :neuffai frequencies decrease With angie.: The final computed angle of 75

degrees has the highest maximum growth rate which is almost twice that of the 2D wave. When the

angle increases further the curve begins to come down. For small wave-propagation angles the fre-

quency where the maximum growth rate is achieved increases by a small amount from the 2D one, but

when the angle increases from 60 to 75 degrees the maximum growth rate frequency shifts to a lower

value. The corresponding variation of e_r with o) is shown in Figure' 10b. The curves move from right

to left as the angle increases.

in Figures 1 la arid i lb we present stability characteristics of a typical far-wake station that has

= 1.2. Mode I waves are computed and growth rate and wave-number curves are shown for the

Mach numbers 0, 1, 2, 3, 4, 5, 6 and 7. The qualitative nature of the results is very similar to those of

the near-wake station _ = 0.1. The maximum growth rates are much lower, however (e.g. at M = 1 the

maximum growth rates are approximately 0.018 and 0.16 respectively). The main quantitative

difference between the two stations is that the neutral value of e¢ for the far-wake profile is approach-

ing a non-zero constant as the Mach number increases, whereas the near-wake value was decreasing to

zero. This apparent difference in the physics is not too surprising in view of the completely different

structure of the basic flow in the near- and far-wake respectively.

E

7. Conclusions.

The present study is concerned with the understanding of the physical instability mechanisms tl_at

are at play in free shear flows and in particular symmetric wakes. The main emphasis was given to the
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instability of near-wakes. It was shown that these mechanisms can only be captured correctly if die

correct basic flow is used. In fact our results suggest that the hypersonic limit of far-wakes is very

different from that of near-wakes (this problem is currently being analyzed by the author), and the use

of a model profile (e.g. gaussian distribution) in an attempt to capture the near-wake dynamics is

incorrect. Using our computed basic-flow we showed that for low enough Mach numbers there exists

a small region of absolute instability very near the trailing edge which disappears as the Mach number

increases. The maximum spatial growth rates available increase as the trailing edge is approached,

irrespective of the Mach number. Further more mode I waves are the most dangerous in the near-wake

and the instability (maximum growth-rate) can be almost doubled if the wave is three-dimensional. If

a temporal theory is carried out instead, some different behavior results. For example, as Chen et al.

(1989) report, a far-wake profile modeled by the gaussian distribution _"= 1 - 0.692e -°'69315v2 together

with the corresponding temperature variation, gives the highest temporal growth rate for mode I waves

which are two dimensional, and at all Mach numbers. In Figure 12 we show the spatial stability of this

profile, which shows that the growth rate is larger for 3D waves inclined at an angle of about 60

degrees. Such discrepancies between spatial and temporal calculations can, therefore, be very mislead-

ing in practical applications.
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Figure 1 Streamwise development of basic flow; horizontal velocity component. Flow develops from
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